123

International GCSE in Mathematics A - Paper 2H mark scheme

Question	Working	Answer	Mark	AO		Notes
1	$2 \times 2 \times 5$ or $2 \times 3 \times 5$ or $3 \times 3 \times 5$			AO1	M1	for one of 20, 30, 45 written as product of prime factors or
	or two of					list of at least 3 multiples of any two of 20, 30, 45
	20, 40, 60					
	30, 60, 90					
	45, 90, 105					
	$2 \times 2 \times 5$ and $2 \times 3 \times 5$ and $3 \times 3 \times 5$				M1	
	or all of					
	20, 40, 60 , 80 180					
	30, 60, 90 180					
	45, 90, 105 180					
		180	3		A1	for 180 or $2 \times 2 \times 3 \times 3 \times 5$ oe
2				AO1	M1	for $7n + k$ (k may be zero)
		7 <i>n</i> − 5 oe	2		A1	
3	$\frac{1}{2} \times (10 + 14) \times 9$ oe (= 108)			AO2	M1	for area of cross section
	'108' × 6 (=648)				M1	(dep on previous M1) for volume of prism
	'648' × 0.7				M1	(independent)
		453.6	4		A1	accept 454

Questio	n	Working	Answer	Mark	AO		Notes
4	a		p^9	1	AO1	B1	
	b		m^{-12}	1	AO1	B1	
	c		1	1	AO1	B1	
	d		$2^{\frac{1}{3}}$	1	AO1	B1	
	e	5x + 35 = 2x - 10 or			AO1	M1	for removing bracket or dividing all terms by 5
		$x + 7 = \frac{2x}{5} - \frac{10}{5}$					
		eg. $5x - 2x = -10 - 35$ or				M1	for isolating x terms in a correct equation
		$7 + \frac{10}{5} = \frac{2x}{5} + x$					
			-15	3		A1	dep on M1
5		14000 × 4 (=56000)			AO1	M1	NB. multiplication by 4 may occur before or after percentage decrease
		0.075 × '56000' (=4200) or				M1	
		0.075 × 14000 (=1050)				3.61	
		'56000' – '42000' or				M1	(dep)
		14000 – '1050'					
			51 800	4		A1	

Question	1	Working	Answer	Mark	AO		Notes
6	a		triangle with vertices	1	AO2	B1	
			(3, -1) (3, -4) (5, -4)				
	b		Rotation		AO2	B1	
			centre (-3, 0)			B1	
			90° anticlockwise	3		B1	accept +90°, 270° clockwise, -270°
							NB. If more than one transformation then no marks can be awarded
7	a	$4 \times 15 \ (=60) \ \text{or} \ \frac{a+b+c+d}{4} = 15$			AO3	M1	
		or					
		$4 \times 15 - 39$					
			21	2		A1	
	b	d - a = 10 or $a = 11$ or			AO3	M1	ft from (a)
		a = ``21'' - 10 or					(can be implied by 11, b , c , 21 OR
		b + c = 39 - 11 = 28					a, b, c, d with b + c = 28)
			14	2		A1 cao	
8		0.02 × 40 000 (=800) or 1.02 × 40 000 (=40800) or 2400			AO1	M1	
		"40800"×0.02(=816) and "41616"×0.02(=832.32) OR				M1	(dep) method to find interest for year 2 and year 3
		2448.32					
			42448.32	3		A1	

Question	Working	Answer	Mark	AO		Notes
9	3x + y = 13 or $6x + 2y = 26$			AO1	M1	multiplication of one equation with correct operation selected or
	-3x - 6y = 27 + x - 2y = 9					rearrangement of one equation with substitution into second
	eg. $3x - 2 = 13$ or $15 + y = 13$				M1	(dep) correct method to find second variable
		5,-2	3		A1	for both solutions dependent on correct working
10	$\frac{14}{3} \div \frac{32}{9}$			AO1	M1	
	$\frac{14}{3} \times \frac{9}{32} \text{ or } \frac{126}{27} \div \frac{96}{27} \text{ or } \frac{42}{9} \div \frac{32}{9}$				M1	
		answer given	3		A1	correct answer from correct working
11	(6 – 2) × 180 (=720)			AO2	M1	complete method to find sum of interior angles
	'720' - (86 + 123 + 140 + 105) (=266) or '720' - 454 (=266)				M1	dep on 1 st method mark
	'266' ÷ 2				M1	dep on 1st method mark
		133	4		A1	

	١
N	٥

Qu	estion	Working	Answer	Mark	AO		Notes
12	2 a		8, 25, 50, 90, 112, 120	1	AO3	B1	cao
	b	Plotting points from table at ends of			AO3	M1	$\pm \frac{1}{2}$ sq ft from sensible table
		interval					ie clear attempt to add frequencies
		Points joined with curve or line segments		2		A1	ft from points if 4 or 5 correct or if all points are plotted consistently within each interval at the correct heights
							Accept cf graph which is not joined to the origin
							NB A bar chart, unless it has a curve going consistently through a point in each bar, scores no points.
	c	60 (or 60.5) indicated on cf graph			AO3	M1	for 60 (or 60.5) indicated on
		or stated					cf axis or stated
			approx 33	2		A 1	If M1 scored, ft from cf graph
							If no indication of method, ft only from correct curve & if answer is correct ($\pm \frac{1}{2}$ sq tolerance) award M1 A1
13	3	$P - c = \frac{1}{2}ab^2$			AO1	M1	Isolate term in b
		$P - c = \frac{1}{2}ab^2$ $\frac{2(P - c)}{a} = b^2$				M1	Isolate b^2
		,	$b = \sqrt{\frac{2(P-c)}{a}}$	3		A1	oe with b as the subject

Question	Working	Answer	Mark	AO		Notes
14 a	2 correct points plotted			AO1	M1	
	eg (0, 4) and (3, 0)					
	4x + 3y = 12 drawn		2		A1	
b			3	AO1	В3	Correct region
	Correct region					B2 for $x = 4$ and $y = -3$ drawn and consistent shading correct for at least two inequalities
						B1 for $x = 4$ and $y = -3$ drawn
15 a			3	AO1	В3	Correct diagram
	$\begin{pmatrix} A & 14 & M \\ & & 28 & 12 \end{pmatrix}$					B2 for 3 over-lapping circles with 7 in intersection and at least 2 other correct numbers
	16 7 5					B1 for 3 over-lapping circles with 7 in intersection
	18 D	0				
b		$\frac{34}{100}$ oe	1	AO3	B1	ft from diagram
c		23 oe	1	AO3	B1	ft from diagram
		46				

Working

 $M = \frac{k}{g^3} \text{ or } M \propto \frac{k}{g^3}$

Question

a

16

		$24 = \frac{k}{2.5^3}$ oe or $(k = 375)$				M1	implies first M1
		2.53		2		A 1	,
			$M = \frac{375}{g^3}$	3		A1	accept $M = \frac{k}{g^3}$ with $k = 375$ stated elsewhere in question
	b	$(g =)\sqrt[3]{375 \div \left(\frac{1}{9}\right)}$ oe or $\sqrt[3]{3375}$	3		AO1	M1	
			15	2		A1	
17	a		-3	1	AO1	B1	
	b		2	1	AO1	B1	
	c	g(2) = 6			AO1	M1	
			0.75 oe	2		A1	
18		correct length scale factor			AO2	M1	
		eg $\sqrt{\frac{384}{864}}$ or $\frac{2}{3}$ or $\frac{3}{2}$					
		$\left(\frac{2}{3}\right)^3 \times 2457$				M1	for complete method
			728	3		A1	

Mark

Answer

AO

AO1

M1

Notes

Question	Working	Answer	Mark	AO		Notes
19		E, B, D, A	3	AO1	В3	All correct
						B2 for 3 correct
						B1 for 2 correct
20 a	$\frac{4}{9} \times \frac{3}{8}$			AO3	M1	
	$\frac{7}{9}$ $\frac{8}{8}$					
		$\frac{1}{6}$	2		A1	oe, eg 12/72
		6				Allow 0.16(666) rounded or truncated to at least 2dp
b	$\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8} \text{ or } \frac{20}{72} + \frac{20}{72} \text{ oe}$	$\frac{5}{9}$		AO3	M2	M1 for $\frac{4}{9} \times \frac{5}{8}$ or $\frac{5}{9} \times \frac{4}{8}$ or $\frac{20}{72}$ oe
	or $1 - \frac{4}{9} \times \frac{3}{8} - \frac{5}{9} \times \frac{4}{8}$ or $1 - \frac{11}{6} - \frac{5}{9} \times \frac{4}{8}$					Accept fractions evaluated
	Ge					$\frac{20}{72} = 0.27\dot{7}$, $\frac{12}{72} = 0.16\dot{6}$
						rounded or truncated to at least 2dp
			3		A1	oe, e.g. $\frac{40}{72}$ or $\frac{20}{36}$

7	
	O
	=
	\sim
	=
	Cation A
	J
	- 1
	- 1
	Sample Assessment Materials (SAMS)
	v
	σ
	-
	_
	=
	\sim
	=
	Œ
	1
	10
	Ÿ,
	ď
	α
	17
	7,
	=
	_
	$\mathbf{\sigma}$
	_
	_
	<
	_
	σ
	_
	α
	_
	O
	=
	U
	•
	$\overline{}$
	U
	Ť
	~
	_
	v
	~

Question	Working	Answer	Mark	AO		Notes
21	$\frac{\sin 47}{13.8} = \frac{\sin MLN}{8.5}$			AO2	M1	Or method using a right angled triangle to find length MX (MX is perpendicular to LN)
						$\sin 47 = \frac{MX}{8.5}$
	$MLN = \sin^{-1}\left(\frac{\sin 47 \times 8.5}{13.8}\right)$				M1	Or $\cos^{-1} = \frac{8.5\sin 47}{13.8}$
	MLN = 26.7(73)				A1	LMX = 63.232
	<i>LMN</i> = 180 – 47 – '26.7' or 106(.2260622)				M1	LMN = 63.232 + (180 - (90+47)) or $106(.2260622)$
	$\frac{1}{2} \times 8.5 \times 13.8 \times \sin("106")$				M1	
		56.3	6		A1	Accept an answer that rounds to 56.3 or 56.4 unless clearly obtained from incorrect working.
22 a	$2(x^2-4x)+9$ or			AO1	M1	
	$2(x^{2} - 4x) + 9 \text{ or}$ $2(x^{2} - 4x + \frac{9}{2})$					
	$2((x-2)^2-2^2)+9$ or				M1	
	$2((x-2)^2 - 2^2) + 9 \text{ or}$ $2((x-2)^2 - 2^2 + \frac{9}{2})$					
		$2(x-2)^2+1$	3		A1	
b		explanation	1	AO1	B1	E.g. Because minimum is at (2, 1)

Question	Working	Answer	Mark	AO		Notes
23	$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ or			AO2	M1	
	$\begin{pmatrix} -2 \\ -3 \end{pmatrix} + \begin{pmatrix} 9 \\ 4 \end{pmatrix} \mathbf{or} \begin{pmatrix} 7 \\ 1 \end{pmatrix}$					
	$\sqrt{7^{2}+1^{2}}$				M1	dep
		$\sqrt{50}$ oe	3		A1	accept 7.07(06)
24	$\left(\sqrt{12}-1\right)\left(2+\sqrt{3}\right)$			AO1	M1	method to rationalise
	$\frac{(2-\sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}$					
	$\frac{\left(\sqrt{12} - 1\right)\left(2 + \sqrt{3}\right)}{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)}$ $\frac{2\sqrt{12} - 2 + \sqrt{12}\sqrt{3} - \sqrt{3}}{4 - 3}$				M1	correct expansion of brackets
	$\sqrt{12} = 2\sqrt{3}$				B1	may be seen before expansion
		shown	4		A1	answer from fully correct working with all steps seen
25	$(v =) 3t^2 - 5 \times 2t - 8$			AO1	M1	for 2 out of 3 terms differentiated correctly
	$3t^2 - 10t - 8 = 0$				A1	correct equation
	(3t + 2)(t - 4) = 0				M1	for method to solve quadratic
		4	4		A1	t = 4 only