## Motion graphs worksheet

AddvanceMaths.com/Guides

## Name:

## Class:

Match the term, definition and standard unit:

The rate at which an object
moves in a specific direction.

The length between points without regard to direction.

The rate at which an object moves in any direction.

The rate of change of speed or velocity.



Study the distance-time graphs below and answer the questions:

Look at the graph on the left...


Describe the motion between 2 and 3 hours.

What happened between 7 and 9 hours?

How far did the object travel in the first two hours?

## Motion graphs worksheet

Look at the graph on the right...
How far had the object travelled in the first 5 minutes

For how long did the object rest at 60 m from the start?

Did the object return to its original position? (circle)

## Yes



How do you know?

David cycles from his house to the shop and back. Describe his journey using the distance-time graph below:


In the first 3 minutes, David...

After 3 minutes from the start, he...

At 9 minutes, David...

David's full journey took... And he travelled a total distance of...

## Motion graphs worksheet

AddvanceMaths.com/Guides

## Write down what kind of motion each of these distance-time graphs indicate:

The first one has been done for you!



## CUAILINGE

What does the gradient of the line on a distance-time graph represent?

## Motion graphs worksheet

AddvanceMaths.com/Guides

## Fill in the gaps in these formulas:



Fill in the blanks in the sentence:
When the object is $\qquad$ the speed is increasing.

When the object is $\qquad$ the speed is decreasing.

Tick ( $\sqrt{ }$ ) true or false for each statement:

A horizontal line on a distance-time graph indicates a constant speed.


A downward curved line on a distance-time graph indicates deceleration.


An upward diagonal line on a speed-time graph always indicates an acceleration.


If a line is steep on a distance-time graph, it indicates that the object is moving at a slower speed.


The velocity of an object can be negative or positive, whereas speed is always positive.


## Motion graphs worksheet

AddvanceMaths.com/Guides

Study the speed-time graphs below and answer the questions:

## Look at the graph below on the left and tick the correct answer(s).

## SPEED-TIME



In which sections did the object accelerate?
A
B
C
D
E

In which section did the object decelerate?
A
B
C
D
E

In which sections did the object maintain a constant speed?
A
B
C
D
E

Look at the graph below on the right and answer the questions.
How far did the object travel in Section

What was the speed of the object in Section C?

Did the object decelerate in Section F?

$$
\text { Yes } \quad \text { No }
$$



How do you know?

## Motion graphs worksheet

Look at the graph on the right...
How far did the object travel in section C?

Did the object return to its original position? (circle)

In which sections did the object accelerate? (tick multiple)
A
B
C
D
E

In which section did the object have the lowest constant speed?
A
B
C
D
E

## CIAILLINGE

Calculate the total distance travelled!

## Motion graphs worksheet

AddvanceMaths.com/Guides

Write down what kind of motion each of these SPEED-time graphs indicate:
The first one has been done for you!



## CTALMWNOL <br> What does a curved line on a speed-time graph indicate?

## Motion graphs worksheet

AddvanceMaths.com/Guides

Construct DISTANCE-TIME graphs based on the journey descriptions below.


Johnny starts off from his house and walks 30 m in 2 minutes. He then speeds up and walks another 40 m in the next 2 minutes. After stopping at the shop for 1 minute, he turns and walks all the way back to his house in the next 3 minutes.

A car starts from the house and travels at a speed of $80 \mathrm{~km} / \mathrm{h}$ for the first 30 minutes. It then travels another 10 km in the next 20 minutes. After resting for 20 minutes, the car travels in the opposite direction, covering a distance of 20 km in 20 minutes.


## Motion graphs worksheet

Construct SPEED-TIME graphs based on the journey descriptions below.

Tanya cycles 60m in 3 seconds. She then accelerates to $50 \mathrm{~m} / \mathrm{s}$ in the next second and maintains that speed for the next 4 seconds.
Finally, she slows down to $30 \mathrm{~m} / \mathrm{s}$ in the next second.



A car accelerates from 0-50 $\mathrm{km} / \mathrm{h}$ in 20 minutes. For the next half an hour, it travels 25 km . The car then decelerates and stops in the next 10 minutes. After staying in rest for 10 minutes, the car accelerates to $20 \mathrm{~km} / \mathrm{s}$ in the next 10 minutes and maintains that speed for another 10 minutes. dark or light, and if you draw a curve, do it in one smooth gentle motion.

Construct a SPEED-TIME graph based on the DISTANCE-TIME graph.


## Evaluation!

I understand the definitions of the terms: velocity, speed, distance, displacement, acceleration, deceleration, rest, constant.

I can evaluate distance-time and speed-time graphs and answer exam-style questions on these.

I can confidently identify what different types of lines indicate on speed-time and distance-time graphs.

I can successfully construct distance-time and speed-time graphs based on written descriptions.

I can compare speed-time and distance-time graphs and use one to construct the other.

