

Prime Factors Problems

Time: 1 hour and 25 minutes

Score: /84

Surname:
Other names:

Mark Scheme and revision available: www.addvancemaths.com/revision/primefactors

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- If blank paper is used, write down the question's number
- You must show all your working out.

Information

- The marks for each question are shown in brackets.
- Blank paper is provided at the end if extra space is needed.
- The questions are arranged in order of increasing difficulty.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Prime Factorise these numbers:

$$40 =$$

$$100 =$$

$$190 =$$

$$400 =$$

$$1000 =$$

$$125 =$$

$$250 =$$

$$84 =$$

Find the highest common factor of the following pairs: 2)

a) 12 and 15

(2)

(12)

b) 40 and 12

_____(2)

c) 1000 and 700

_ (2)

d) 36 and 48

(2)

e) 700 and 280

_____(2)

f) 640 and 480

_____(2)

3)	Find the lowest common multiple of the following pairs on numbers:		
ä	a) 12 and 15	(2)	
B	p) 40 and 13	(2)	
C	r) 1000 and 700	(2	
C	d) 36 and 48	/2	
ϵ	e) 700 and 280	(2)	
Ą	7) 640 and 480	(2)	
		(2)	

4) Find the lowest common multiple of the following sets of numbers:

a) 12,15 and 18

(3)

b) 400,800 and 120

____(3)

Prime Factors Problems Add Value

Consider $A = 2^3 \times 5^x \times 7^8$ 5)

Write the following as products of their prime factors:

a)
$$15A =$$

b)
$$4A =$$

c)
$$A^3 =$$

d)
$$\frac{3A}{7} =$$

(2)

Consider $A = 2^m \times 3^n \times 5^2 \times 7$ and $B = 2 \times 3^n \times 5^4 \times 11$ 6) where m and n are integers larger than 2.

Write the following as products of their prime factors:

a)
$$AB =$$

b)
$$2AB^2 =$$

c) The highest common factor of A and B

d) The lowest common multiple of A and B

(2)

(2)

Consider $A = 2^{10} \times 3^{20} \times 5^{30}$ 7)

Write the following as products of their prime factors:

a)
$$10A =$$

b)
$$\sqrt{A} =$$

c)
$$\sqrt{81A}$$

$$d) \sqrt[5]{A}$$

Write $2^{12} \times 3^3 \times 5^{11}$ in standard form. **8**a) Show your working.

(3)

The number of radioactive atoms in a sample of in a sample b) is 7.5×10^{28} . Write this number as a product of its prime factors.

(3)

It is estimated that there are about 3.15×10^{79} protons in c) the universe.

Write this number as a product of its prime factors.

(3)

- Consider the number $N = 3^4 \times 5^6 \times 13^8$ 9)
- Fred multiplies *N* by a number to make it even. a)
 - i) What is the smallest number Fred could have chosen? Write your answer as an integer.

- ii) Explain your answer. (2)
- Milly multiplies N by a number to make it a multiple of 42. b)
 - i) What is the smallest number Milly could have chosen? Write your answer as an integer.

ii) Explain your answer.

(2)

Question 9 Continued

 $N = 3^4 \times 5^6 \times 13^8$

- Ahmed multiplies N by a number to make it a square c) number.
 - i) What is the smallest number Ahmed could have chosen? Write your answer as an integer.

ii) Explain your answer.

(2)

- d) Abby multiplies N by a number to make it a cube number.
 - i) What is the smallest number Abby could have chosen? Write your answer as an integer.

ii) Explain your answer.

(2)

Blank Paper

Blank Paper

